首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17424篇
  免费   1541篇
  国内免费   2561篇
  2024年   18篇
  2023年   170篇
  2022年   294篇
  2021年   799篇
  2020年   644篇
  2019年   790篇
  2018年   735篇
  2017年   585篇
  2016年   775篇
  2015年   1151篇
  2014年   1322篇
  2013年   1355篇
  2012年   1762篇
  2011年   1557篇
  2010年   961篇
  2009年   917篇
  2008年   1085篇
  2007年   968篇
  2006年   897篇
  2005年   776篇
  2004年   654篇
  2003年   647篇
  2002年   524篇
  2001年   362篇
  2000年   296篇
  1999年   300篇
  1998年   181篇
  1997年   173篇
  1996年   151篇
  1995年   113篇
  1994年   111篇
  1993年   68篇
  1992年   78篇
  1991年   53篇
  1990年   45篇
  1989年   41篇
  1988年   27篇
  1987年   25篇
  1986年   21篇
  1985年   33篇
  1984年   16篇
  1983年   13篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1971年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
951.
952.
Ribosomal protein L34 (RPL34), belonging to the L34E family of ribosomal proteins, was reported to be dysregulated in several types of cancers and plays important roles in tumor progression. However, the expression and roles of RPL34 in human glioma remain largely unknown. Thus, the objective of this study was to investigate the expression and role of RPL34 in glioma. We report here that RPL34 is highly expressed in human glioma tissues and cell lines. Knockdown of RPL34 markedly inhibited the proliferation, migration, and invasion, as well as prevented the epithelial-mesenchymal transition phenotype in glioma cells. Further, mechanistic analysis showed that knockdown of RPL34 significantly downregulated the levels of p-JAK and p-STAT3 in glioma cells. Taken together, our findings indicated that knockdown of RPL34 inhibits the proliferation and migration of glioma cells through the inactivation of JAK/STAT3 signaling pathway. Thus, RPL34 may serve as a potential therapeutic target for the treatment of glioma.  相似文献   
953.
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.  相似文献   
954.
955.
956.
957.
The methylotrophic yeast Pichia pastoris, which proved successful in producing many heterologous proteins, was used to express an insulin precursor. A transformant with a high copy number of the gene integrated into the chromosome was obtained by the dot-blotting method. In high-density fermentation using a simple culture medium composed mainly of salt and methanol, the expression level reached 1.5 g/L. A simple two-step method was established to purify the expression product from the culture medium with an overall recovery of about 80%. After tryptic transpeptidation, human insulin with full receptor binding capacity and biological activity was obtained. In the presence of zinc, the recombinant human insulin could be crystallized in the rhombohedral form.  相似文献   
958.
959.
Amyloid-beta, the pathologic protein in Alzheimer's disease, induces chemotaxis and production of reactive oxygen species in phagocytic cells, but mechanisms have not been fully defined. Here we provide three lines of evidence that the phagocyte G protein-coupled receptor (N-formylpeptide receptor 2 (FPR2)) mediates these amyloid-beta-dependent functions in phagocytic cells. First, transfection of FPR2, but not related receptors, including the other known N-formylpeptide receptor FPR, reconstituted amyloid-beta-dependent chemotaxis and calcium flux in HEK 293 cells. Second, amyloid-beta induced both calcium flux and chemotaxis in mouse neutrophils (which express endogenous FPR2) with similar potency as in FPR2-transfected HEK 293 cells. This activity could be specifically desensitized in both cell types by preincubation with a specific FPR2 agonist, which desensitizes the receptor, or with pertussis toxin, which uncouples it from G(i)-dependent signaling. Third, specific and reciprocal desensitization of superoxide production was observed when N-formylpeptides and amyloid-beta were used to sequentially stimulate neutrophils from FPR -/- mice, which express FPR2 normally. Potential biological relevance of these results to the neuroinflammation associated with Alzheimer's disease was suggested by two additional findings: first, FPR2 mRNA could be detected by PCR in mouse brain; second, induction of FPR2 expression correlated with induction of calcium flux and chemotaxis by amyloid-beta in the mouse microglial cell line N9. Further, in sequential stimulation experiments with N9 cells, N-formylpeptides and amyloid-beta were able to reciprocally cross-desensitize each other. Amyloid-beta was also a specific agonist at the human counterpart of FPR2, the FPR-like 1 receptor. These results suggest a unified signaling mechanism for linking amyloid-beta to phagocyte chemotaxis and oxidant stress in the brain.  相似文献   
960.
Segregation analyses aim to detect genetic factors that have a major effect on an individual's risk of disease and to describe them in terms of mode of inheritance, age-specific cumulative risk (penetrance), and allele frequency. We conducted single- and two-locus segregation analyses of data from 1,476 men with prostate cancer diagnosed at age <70 years and ascertained through population registries in Melbourne, Sydney, and Perth, Australia, and from their brothers, fathers, and both maternal and paternal lineal uncles. Estimation and model selection were based on asymptotic likelihood theory and were performed through use of the software MENDEL. All two-locus models gave better fits than did single-locus models, even if lineal uncles were excluded or if we censored data (age and disease status) for relatives at 1992, when prostate-specific-antigen testing started to have a major impact on the incidence of prostate cancer in Australia. Among the genetic models that we considered, the best-fitting ones included a dominantly inherited increased risk that was greater, in multiplicative terms, at younger ages, as well as a recessively inherited or X-linked increased risk that was greater, in multiplicative terms, at older ages. The recessive and X-linked effects were strongly confounded, and it was not possible to fit them together. Penetrance to age 80 years was approximately 70% (95% confidence interval [CI] 57%-85%) for the dominant effect and virtually 100% for the recessive and X-linked effects. Approximately 1/30 (95% CI 1/80-1/12) men would carry the dominant risk, and 1/140 (95% CI 1/220-1/90) would carry the recessive risk or 1/200 (95% CI 1/380-1/100) would carry the X-linked risk. Within discussed limitations, these analyses confirm the genetic heterogeneity, of prostate cancer susceptibility, that is becoming evident from linkage analyses, and they may aid future efforts in gene discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号